Towards Visual-Inertial Navigation of an Underwater Vehicle for Aquaculture Inspection Operation
نویسندگان
چکیده
This paper presents an online sensor fusion algorithm for state estimation of a remotely operated underwater vehicle for aquaculture inspection. The algorithm is based on an Unscented Kalman Filer (UKF) and uses information from several sources including an onboard inertial sensor, an onboard camera combined with line lasers and a priory knowledge about the aquaculture geometry. The performance of the fusion algorithm is validated through several Monte Carlo simulation scenarios for a small-scale aquaculture installation under realistic environmental parameters.
منابع مشابه
Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملطراحی و پیادهسازی الگوریتم ناوبری AHRS/GPS/DR برای روندههای زیرسطحی خودگردان با برد بلند و ماندگاری بالا در زیر آب
Time-growing navigation error due to inevitable measurement errors in the MEMS-grade inertial sensor is one of the main challenges in low-cost inertial navigation systems (INSs). This paper aims to develop AHRS/GPS/DR integrated navigation algorithm for long-range autonomous underwater vehicle (AUV). Proper performance in deals with long-term GPS outage is the main advantage of the proposed low...
متن کاملCalibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation
The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...
متن کاملTowards Model - Aided Navigation of Underwater Vehicles ∗
This paper reports the development and preliminary experimental evaluation of a model-aided inertial navigation system (INS) for underwater vehicles. The implemented navigation system exploits accurate knowledge of the vehicle dynamics through an experimentally validated mathematical model, relating the water-relative velocity of the vehicle to the forces and moments acting upon it. Together wi...
متن کاملPerformance Evaluation of AHRS based MEMS for Unmanned Underwater Vehicle
Generally, underwater unmanned vehicle (UUV) have adopted an inertial navigation system (INS), dead reckoning (DR), acoustic navigation and geophysical navigation techniques as the navigation method because GPS does not work in deep underwater environment. Although the tactical inertial sensor has been usually used at UUV for precise control during long operation time because the sensor can pro...
متن کامل